
Supplementary For “A Fast GPU Schedule For À-Trous
Wavelet-Based Denoisers”

Reiner Dolp , Johannes Hanika and Carsten Dachsbacher

Karlsruhe Institute of Technology, Germany

Outline In this supplementary material, we discuss additional re-
sults for our padding-free bank conflict resolution strategy outlined
in section 3.5 of the paper. More specifically, section 1 discusses the
bitwidth correction factor ĉb, section 2 discusses how to normalize
the order of banks within a subgroup, and section 3 discusses how
to reshape bank patterns.

1 Bitwidth Correction

Equation 1 in the paper analyses the relationship of two memory
slices—the bitwidth bs of a row 1×Ws in shared memory, and the
bitwidth of a shared memory slice bc accessed by the i invocations
participating in bank conflict resolution—using their index spaces.
Consequently, assuming the indexed elements in each slice have
identical bitwidth. However, the bitwidth of the indexed elements
may differ for several reasons. First, because each array element
in shared memory may cover multiple banks. Second, because a
device may resolve bank conflicts inherently on a finer granularity
than a subgroup or do so depending on the bitwidth of the memory
transaction.

To match the bitwidth of elements in both index spaces, we scale
the second index space to

ĉb =
bc

bs/Ws
.

Applying this correction factor scales the height n of a bank pattern
tile by factor ĉb/i. As a practical consequence, our bank conflict
resolution strategy for b-bit memory accesses resolves bank con-
flicts for any b′ ≥ b-bit memory accesses,ensuring our method is
independent of the load-store instructions selected by the shader
compiler.

2 Normalization of Bank Pattern Tiles

To this point, we have only noted that each column within a sub-
set contain the identical set of non-conflicting banks, ignoring the
position of banks within each column. In this subsection, we de-
rive how to undo the permutation of banks within a column, and
the barrel shift unique to each column – knowledge which we will
leverage in the next subsection to reshape bank pattern tiles.

By generalizing the comparison of strides in equation (1) of the

Px Py = Ty

Tx

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Larger reproduction of figure 1(d) in the paper show-
ing an assignment of 32 shared memory banks to words within an
overlapped tile with halo radius r = 2 and workgroup size 16×16.
Eight consecutive lines form a bank pattern, which repeats verti-
cally. Within a bank pattern, four rows form a bank pattern tile
repeating horizontally with banks barrel shifted by three vertically.

paper to allow for offsets within banks we can pose a row query
through

n · ĉb = m · s+Tx ⇐⇒ n · ĉb −m · s =−gcd(s, ĉb).

and by allowing an offset within the index access function, we
can pose a column query through

https://orcid.org/0000-0001-5244-5982
https://orcid.org/0000-0002-7648-1782
https://orcid.org/0000-0003-4690-3574


R. Dolp, J. Hanika & C. Dachsbacher / Supplementary For “A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Tx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(a) row query 32n = 20s+4 =⇒ n = 5m+2, s = 8m+3

(b) column query 32n+4 = 20s =⇒ n = 5m+3, s = 8m+5

Figure 2: Geometric interpretation of row and column queries us-
ing the shared memory footprint of fig. 1. (a) The solution of the
row query can be read as “Each bank pattern tile consists out
of eight rows and cycles five times through the shared memory
banks. In column four, the zero-th bank is hit after a shift by three
rows, which requires two cycles through the shared memory banks.”
Hence, columns within each subset are barrel shifted by three. The
i-th bank pattern tile can be made identical to the first bank pattern
tile using a barrel shift of −3i, equal to an adaptive modular map-
ping of i 7→ i− 3%8. (b) Analogously, the solution to the column
query can be interpreted as “The fourth bank in the zero-th column
is hit in row five after three cycles through shared memory banks
are completed.” The permutation of banks within a column can be
inverted using the affine modular mapping i 7→ 5i%8.

n · ĉb +Tx = m · s ⇐⇒ n · ĉb −m · s = gcd(s, ĉb).

Thus, information about row positions is queried using negative
values on the right-hand side of the equation, and information about
columns is queried using positive values. A row query answers the
question “When is bank zero in column Tx?”, while a column query
answers the question “When is bank Tx in column zero?”. The re-
sult of a row query can be used to undo the barrel shift unique to
each column within a subset, making columns within a subset iden-
tical. A column query can be used to find the modular stride within
a column and can, therefore, be used to undo the permutation within
a column, which will sort banks within a column in ascending or-
der from top to bottom.
Our choice of the greatest common divisor as an offset in row
queries is motivated by the fact that it equals the offset of the next
column within the subset. In contrast, we choose the greatest com-

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

4 5 6 7

8 9 10 11

12 13 14 15

24 25 26 27

28 29 30 3112 13 14 15

16 17 18 19 0 1 2 3

20 21 22 23

16 17 18 19

4 5 6 7

24 25 26 27

0 1 2 3

20 21 22 23

8 9 10 11

28 29 30 31

0 1 2 316 17 18 19

20 21 22 23

0 1 2 3

4 5 6 7

8 9 10 11

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

0 1

20 21

8 9

28 29

16 17

4 5

24 25

12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1

20 21

8 9

28 29

16 17

4 5

24 25

12 13

Figure 3: Reshaping of the bank pattern tile with shape 4× 8 in
fig. 1. (a) reshaping to 8 × 4 through vertical adaptive modular
mapping with a granularity of bank pattern tiles. (b) reshaping to
2×16 through horizontal adaptive modular mapping with a gran-
ularity of bank patterns, respectively bank pattern tiles.

mon divisor for column queries, since it is equal to the index of the
second smallest bank index within the subset. Figure 2 gives a ge-
ometric intuition into the equations of row and column queries and
their solution.

3 Reshaping Bank Pattern Tiles

To reshape bank pattern tiles, we apply a multi-level reshaping
strategy. We first apply an adaptive modular mapping on the granu-
larity of bank patterns tiles and then select columns from neighbor-
ing bank pattern tiles.
A bank pattern tile of any shape can be reshaped to a single 1×32
column by barrel shifting the i-th bank pattern by i columns to the
left. Similarly, a bank pattern tile of width N ×M can be reshaped
to (N/2)×2M by a barrel shift of iM/2. By applying a barrel shift
of iN/2 to the i-th bank pattern tile, a bank pattern tile can be re-
shaped to 2N×(M/2). Figure 3 shows an example for bank pattern
reshaping along both axis.


