
1

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers
REINER DOLP, JOHANNES HANIKA, and CARSTEN DACHSBACHER,
Karlsruhe Institute of Technology, Germany

x

y

x

y

x

y
x

y x′

x yx y

0 1 2 30 10 0

0
0

1

2

3
1

00

fo fo f2↑
input (20482px) level 1 output level 2 output output(a)

baseline

(c) ours

(b)

x

x ≈ yx ≈ y

x
x

y

y

Legend:

first of 8 subgroups,
contains each bank

workgroup tiled to
2 × 8 subgroups

shared memory of
a workgroup at level 9(d)

repeating background
of input in (a)

(e)

Fig. 1. (a+e) Our schedule for à-trous wavelets iteratively partitions the input image into four subimages
to improve cache hit rates and consequently shader runtimes. (b) The baseline maintains the original pixel
coordinates G,~ causing neighboring threads to accesses a growing number of increasingly disjoint and
dilated pixels. (c) In contrast, ours updates pixel coordinates to apply each iteration with an undilated kernel.
Further, permitting shared memory caching in all iterations. (d) Subgroups within a workgroup are reshaped
to rectangular regions. These are constructed in such a way that shifting them anywhere in the shared
memory resident pixel tile does not result in a bank conflict.

Given limitations of contemporary graphics hardware, real-time ray-traced global illumination is only es-
timated using a few samples per pixel. This consequently causes stochastic noise in the resulting frame
sequences which requires wide filter support during denoising for temporally stable estimates. The edge
avoiding à-trous wavelet transform amortizes runtime cost by hierarchical filtering using a constant number
of increasingly dilated taps in each iteration. While the number of taps stays constant, the runtime of each
iteration increases in these usually memory-throughput bound shaders with increasing dilation, because the
increasing non-locality negatively impacts cache hit rates. We present a scheduling approach that optimizes
usage of the memory subsystem by permutating global invocation indices in such a way that each wavelet
filter iteration is applied through undilated taps. In contrast to prior approaches, our method has identical per-
formance characteristics in each iteration, effectively decreasing maintenance cost and improving performance
predictability. Furthermore, we are able to leverage on-chip memory and hardware texture interpolation. Our
permutation strategy is trivial to integrate into existing wavelet filters as a permutation before and after each
level of the wavelet filter. We achieve speedups between 1.3 and 3.8 for usual wavelet configurations in Monte
Carlo denoising and computational photography.

Authors’ address: Reiner Dolp, reiner.dolp@kit.edu; Johannes Hanika, hanika@kit.edu; Carsten Dachsbacher, dachs-
bacher@kit.edu; Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, Germany, 76131.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2577-6193/2024/5-ART1 $15.00
https://doi.org/10.1145/3651299

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0001-5244-5982
HTTPS://ORCID.ORG/0000-0002-7648-1782
HTTPS://ORCID.ORG/0000-0003-4690-3574
https://doi.org/10.1145/3651299

1:2 Dolp et al.

CCS Concepts: • Computing methodologies→ Graphics processors; Image processing; Ray tracing;
Computational photography .

ACM Reference Format:
Reiner Dolp, Johannes Hanika, and Carsten Dachsbacher. 2024. A Fast GPU Schedule For À-Trous Wavelet-
Based Denoisers. Proc. ACM Comput. Graph. Interact. Tech. 7, 1, Article 1 (May 2024), 19 pages. https://doi.org/
10.1145/3651299

1 INTRODUCTION
Image-space denoisers operate on fully accumulated samples. They are a popular choice as they are
easy to integrate as a black-box post-processing step. However, even the runtime cost of denoisers
explicitly designed for real-time applications is often prohibitive, leading people to amortize cost
by combining denoising with upscaling [Kelly et al. 2021; Thomas et al. 2022], through sparse-
sampling [Willberger et al. 2019; Zhdan 2021], quantization [Thomas et al. 2020], or by reducing
the support of their filter kernels [Schied et al. 2018].

(value center Ex) = ping.read(f8 (x));
(value output E> , weight F) = 0, 0;
for ny = −A ; ny < A ; ny++ do

for nx = −A ; nx < A ; nx++ do
(offset o) = vec2(nx,ny);
E= = ping.read(f8 (x + B * o));
E> ,F += 54 (Ex, E=);

end
end
pong.write(f> (x), E> /F);

Fig. 2. Baseline implementation of a
shader applying an à-trous filter itera-
tion ; with filter radius A , kernel 54 , and
dilation B = 2; to pixel x in invocation
x. Our method follows the idea that the
mapping of pixels to invocations may be
positively influenced by adding index ac-
cess functions f8,> .

A common building block of real-time denoisers are à-
trous wavelets [Dammertz et al. 2010], popularized in real-
time rendering through spatio-temporal variance guided fil-
tering (SVGF) [Schied et al. 2017]. À-trous wavelets maintain
a constant number of filtering taps, but iteratively increase
support of the filtering kernel by dilation (see fig. 1(c)). How-
ever, this constant number of filtering taps does not lead
to a constant runtime across all wavelet iterations, due to
decreasing reuse between dilated taps with each recursion
level and consequently, lower cache hit rates and higher
memory instruction latency (see section 4.2).
Image-space denoisers are usually memory-bound gath-

ering operations parallelized by ping-pong buffering. Hence,
computations between pixels are embarrassingly parallel,
providing maximal flexibility to optimize memory through-
put through scheduling, i.e. more efficient ordering of (mem-
ory) instructions without changes to the algorithm. More
concretely, such a scheduling approach may be implemented
by altering the mapping between pixel indices and invocations by adding index access functions
f8,> as shown in fig. 2.

Recent works [Hasselgren et al. 2020; Thomas et al. 2022, 2020] compare favorably against
SVGF when their reconstruction quality to reconstruction time tradeoff is considered. However,
these implementations rely on non-portable optimizers and runtimes, while comparing against
straightforward, portable wavelet filters implemented without considering efficient usage of GPU
hardware resources through scheduling.

In this work, we propose several performance-motivated changes the schedule of à-trous wavelets.
These changes may be implemented through index access functions f8,> . The proposed index
access functions are loop invariant. Hence, our method is trivial to integrate into existing wavelet-
based denoisers by addition of a preamble and postamble to the baseline schedule (cf. fig. 4). Our
contributions are:

• A scheduling strategy without memory overhead localizing global memory accesses in an
à-trous wavelet scheme (Section 3.1) through a 2D embedding (Section 3.2) that is oblivious
to signal boundaries (Section 3.4).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

https://doi.org/10.1145/3651299
https://doi.org/10.1145/3651299

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:3

• Apart from optimizing cache hit rates and thus shader runtimes, this coalesced schedule
enables usage of shared memory, i.e. fast on-chip memory with a user-controlled caching
strategy, resulting in further runtime improvements (Section 3.5).

• Motivated by the high memory consumption of auxiliary feature-guided denoisers, a shared
memory permutation strategy for 2D stencils to eliminate shared memory bank conflicts
without introducing unused memory for padding (Section 3.5).

2 PRIORWORK
Research in Monte Carlo denoising has focused on the design of novel denoising architectures
targeting different sample counts and consequently varying runtime budgets for real-time [Schied
et al. 2017; Thomas et al. 2022], interactive [Chaitanya et al. 2017] or offline rendering [Vogels et al.
2018]. As our work focuses on scheduling, we review prior work from a structural perspective,
i.e. using their data dependencies. For a general survey of denoising algorithms in Monte Carlo
rendering, we refer to the surveys of Zwicker et al. [Zwicker et al. 2015] and Sen et al. [Sen et al.
2015].

À-trous Wavelets For Denoising. Edge-avoiding, undecimated wavelets were introduced to com-
puter graphics by Fattal [Fattal 2009] in the context of computational photography. À-trous wavelets
were first employed for Monte Carlo Denoising by Dammertz et al. [Dammertz et al. 2010].
Schied et al. [Schied et al. 2017] extended this approach to real-time rendering through tem-
poral reprojection. By estimating variance using moments during reprojection and within the
downward pass of the wavelet, they are able to estimate results using two alternating buffers
without an upwards pass assembling all wavelets to a final estimate. Their following work [Schied
et al. 2018] reduces the support of the wavelet as a runtime optimization. Hanika et al. [Hanika
et al. 2011] use à-trous wavelets for image denoising without feature channels. Their approach
preserves all intermediate buffers of the recursive spatial (downward) pass and executes an up-
ward pass to assemble the final estimate. Given the upward pass only relies on the previously
computed wavelets from the downward pass, the whole upward pass can be implemented in a
single shader that concurrently reads all results from the downward pass. The implementations
proposed by these works [Dammertz et al. 2010; Schied et al. 2017, 2018] and applied in industry
implementations [Nvidia Inc. 2023] corresponds to the baseline implementation shown in fig. 2. In
contrast to undilated filters, à-trous wavelets in the baseline schedule cannot exploit commonly
applied optimizations for gathering based post-processing effects, such as hardware texture inter-
polation [Kawase 2003] and on-chip memory resident caching [Nvidia Inc. 2023] after the first filter
iteration. Our method enables these optimizations as undecimated wavelets are applied through
undilated filters.

Convolutional Neural Networks in Denoising. More recently research focus has shifted towards
learned approaches using convolutional neural networks (CNNs) [Bako et al. 2017; Chaitanya et al.
2017; Kalantari et al. 2015; Thomas et al. 2022, 2020; Vogels et al. 2018; Xu et al. 2019]. A commonly
employed architecture is the U-Net [Ronneberger et al. 2015]. Instead of direct prediction of the
output image, kernel prediction [Bako et al. 2017; Vogels et al. 2018] computes a pairwise pixel
similarity and then applies the similarity score encoded in a filter kernel to the input image. In
the context of neural networks, undecimated wavelets may be modelled as increasingly dilated
convolutions without pooling; while layers in pooling architectures such as U-Nets are dual to
decimated wavelet iterations. Our method arranges undecimated wavelets as a tensor stacking
decimated wavelets along the feature dimension. As such our method arranges undecimated
wavelets in the memory layout commonly seen in neural network architectures.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:4 Dolp et al.

undilated filter 5

wavelet filter 52↓

input output

,

�

�

,

d, /2e
d�/2e�

�

�

(a) fshm
Shared Memory

Bijection (Section 3.5)

inner schedule

(b) f2↓
Signal Decomposition

(Section 3.1)

(c) fA
Reordering Bijection

(Section 3.2)

(d) f1
Boundary Bijection

(Section 3.4)

(e) f4
Embedding Bijection

(Section 3.2)

postamble fo outer schedulefipreamble

Fig. 3. Overview of our scheduling approach for a single (inner) filter iteration, which is repeatedly applied
to form the full à-trous wavelet-based denoiser in fig. 1(a). A shader running an undilated filter kernel is
augmented with loop-invariant bijections applied to the invocation indices before (preamble) and after
(postamble) the filter kernel loop to implement an à-trous filter. The postamble scatters write locations in
order to localize global memory read-locations of subsequent iterations without prior application of a bijection
in the preamble. Subsequent iterations of the shader are able to ignore boundaries in their input since our
embedding approximates texture mirroring for out of bounds memory accesses.

Input Features. There is a large variability in denoisers, as denoisers proposed in literature are
usually heavily adapted to fit the rendering budgets and properties of the rendering engine or
task [Barré-Brisebois et al. 2019; Boksansky et al. 2019; Kelly et al. 2021; Willberger et al. 2019].
Denoisers usually receive auxiliary features computed as a byproduct of the rendering process—
such as a G-buffer—packed in an engine specific datagram. Further, samples may be separated into
effects [Hofmann et al. 2023; Schied et al. 2017; Zhdan 2021] as more efficient denoisers are known
for a path subspace. À-trous wavelets are popular for indirect diffuse lighting, where usually large
filter radii are required.

Scheduling of Array Processing Code. Analysis and optimization through affine functions has
a long tradition in compiler theory. Our proposed bank conflict resolution strategy is designed
around the greatest common divisor (GCD) test [Muchnick 1997], a test for loop-carried data
dependencies. Modern automatic parallelization and auto-vectorization leverages the polyhedral
model [Barré-Brisebois et al. 2019; Grosser et al. 2011; Vasilache et al. 2018], which lifts loop nests
into a system of affine constraints (Z-polyhedra) representing every possible dynamic execution
instance. While motivated by these approaches, our objective is to specifically design a manual
optimization method as detailed in the next section.

3 METHOD
We give an overview of our complete method as a sequence of pixel coordinate transformations
implementing the proposed index access functions along with an example implementation, before
discussing each step of this sequence in detail (Sections 3.1 to 3.5).

Model. Independent of their distribution to buffers and images, our method transforms all per-
pixel data identically. Thus, we assume input to the denoiser is given as a 3-dimensional array
� ∈ � ×, ×� where � ×, are the dimensions of the input image and � are the image channels

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:5

along with auxiliary features An iterative denoiser reconstructs � by applying multiple iterations
of the filter 5 . Each iteration is a stencil computation, that integrates pixels from a neighborhood
#G into each pixel G ∈ 1 × 1 ×�—for example, through a weighted average

∑
~∈#G

54 (G,~) using a
pixelwise similarity function 54 as shown in fig. 2. We first describe the application of our method to
a shader implementing an undilated filter iteration 5 , resp. the first iteration of an à-trous wavelet.
We then show that an iterative application of this shader results in the desired à-trous filtering
scheme.

Undilated Filter Iteration. The shader 52↓ modified through our scheduling method computes
(5 ◦ f) (�), which is the filtered image 5 (�) with an additional memory layout transformation f

applied to the output image. The bijection f takes the array index of a pixel in the input � and
maps it to another index in the output array. From a high-level, the proposed f subdivides the
output of 5 into four subimages. In contrast to the baseline, this allows pixels in the next iteration
to be accessed without dilation increasing memory subsystem performance. This f is compatible
with translation. Consequently, allowing us to transform all accessed memory indices at once,
by inserting a preamble fi before, and a postamble fo after the stencil loop. This is equivalent to
transforming the invocation index x directly instead of each memory access—reducing the number
of computations of f by a factor of | |#x | |. The adapted shader 52↓ is shown in fig. 3. The (optional)
preamble fi optimizes shared memory throughput using a bijection fshm to resolve bank conflicts
without row padding (Section 3.5), which is especially desirable if many auxiliary features � are
cached for each pixel. In essence, fshm reshapes subgroups within each workgroup to rectangular
regions. These are constructed in such a way that their translation within the stencil loop does
not result in bank conflicts within the shared memory resident pixel tile (see Figure 1(d)). The
postamble fo is defined as the composition of multiple bijective functions fo = f2↓ ◦ fA ◦ f1 ◦ f4 .
The bijection f2↓ performs the mapping between undilated and à-trous filters by contracting even
and odd signals into four independent output images (Section 3.1). The bijection fA permutes the
order of the output images to influence f4 , which arranges the output images as subimages at
collision-free positions in the output (Section 3.2). The (optional) bijection f1 flips the coordinate
systems of the arranged subimages in order to approximate texture mirroring (Section 3.4). This
approximation ensures memory accesses falling outside of the current subimage fall into similar
regions in neighboring subimages, allowing us to omit the overhead of additional boundary checks
in the stencil loop.

Iterative Filtering. An iterative application of f is shown in Figure 1(a). Apart from the last
iteration ;max, which restores the original image layout through f;max↑ (Section 3.3), each iteration
applies 5 ◦ f , iteratively partitioning each subimage embeded in the input image. As a result,
contracting memory accesses in each iteration (Figure 1(b+c)) to an undilated filter. As all iterations
are applied through an undilated filter, each iteration has identical performance characteristics (cf.
section 4.2).

Discussion. Ourmethod delocalizes write operations to localize read operations as read operations
in a stencil filter have higher multiplicity. At the same time, this places most of the computational
cost of f into the postamble fo, which is independent of the stencil loop. Consequently, overhead
of fo may be hidden through instruction-level parallelism. Opposed to a naive recursive application
of f2↓ to each output image, we embed subimages for two reasons. First, to allow memory reuse
by ping-pong buffering. Second, to optimize occupancy. Through the embedding, a single shader
dispatch processes all subimages concurrently without introducing additional inactive invocations
through quantization to theworkgroup size at subimage boundaries (see fig. 1(d)). In some variations,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:6 Dolp et al.

preamble f8

undilated filter 5

postamble f>

// resolve shared memory bank conflicts within the workgroup using fshm (Section 3.5)

1 (Workgroup Local Invocation Index lid).xy = lid.yx;
2 (Global Invocation Index gid) =(2D Workgroup Index vec2(G6, ℎ6)) * (Workgroup Size,6 × �6)) + lid.xy;
3 preload to shared memory tile[�6+2*(radius A)][,6+2*(radius A)];
4 (value Ex of center pixel x) = tile[lid+(radius A)]; (value output E> , weight F) = 0, 0;
5 for ny = −A ; ny < A ; ny++ do
6 for nx = −A ; nx < A ; nx++ do // loop nest visiting each (contracted) neighbour (nx, ny) ∈ #x

7 (offset o) = (radius A) + vec2(nx,ny); // multiplication with dilation B removed

8 E> ,F += 54 (Ex, tile[lid+offset]);
9 end

10 end
11 if itr ≠ ;max then

// contract wavelets with f2↓ according to wavelet decomposition (Section 3.1)

12 hid = bgid/2c;
13 odd = gid& 1; // approximate texture mirroring through f1 for the chosen embedding order fA

(Section 3.4). The chosen fA is a no-op (Section 3.2).

14 if itr == 0 && odd then hid = bsize/2c-1-hid;
// embed subimages of the wavelet decomposition in output of ping-pong buffers using f4

(Section 3.2), carry read only data

15 gid = hid + odd*bsize/2c;
16 else

// invert layout in last iteration using f;max↑ (Section 3.3)

17 (subimage size sizew) = b(image size size)/B c;
18 (subimage id o) = bgid/sizewc; (subimage local pixel index wid) = gid - sizew*o;
19 gid = o + wid*B ; // interleave subimages

20 (quadrant local pixel index hid) = bgid/2c; (quadrant id odd) = gid & 1;
21 if odd then hid = bsize/2c-1-hid; gid = hid*2+odd; // undo mirroring

22 end
23 pong.write(gid, E> /F);

Fig. 4. Minimal implementation of our method for a filter radius A = 2 and workgroup size of 8 × 8, in which
case our bank conflict resolution strategy simplifies to a transposition of the thread indices. The embedding
is arranging subimages in ascending order on a uniform grid (Section 3.2).

such as the example discussed next, the embedding makes our method invariant to the iteration
index ; .

Example. In the remainder of this paper, we discuss each bijection in detail along with implemen-
tation variants and tradeoffs. As a motivational example, consider the concrete implementation
variant of our method in fig. 4.
The original implementation of 5 is shown in lines 5 to 10. Assuming the original implementation
is an à-trous filter in the baseline schedule, we remove the filter dilation B = 2; increasing with each
iteration ; to contract the neighborhood #x (Line 7). Since our method ensures a constant working
set size equal to the first undilated wavelet iteration, we further access neighboring pixels through
shared memory. Preloading a tile from global to shared memory is a common operation and elided
for brevity (Line 3). As a result, we arrive at a reasonably optimized implementation of an undilated
filter (Lines 3 to 10). The inserted preamble implements a special case of our permutation-based
bank conflict resolution fshm, which for the assumed workgroup shape of 8× 8 can be implemented
as a transposition of local invocation indices (Lines 1 to 2). More generally, fshm reshapes subgroups
from the row-major order of the baseline schedule to a rectangular tiling. In the postamble, the
bijection f2↓ (Line 13) decomposes the output signal into even and odd signals along each dimension

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:7

0

;x

(a) (b)

1

2

3
B B B

o 0 1 2 3

Fig. 5. (a) Spatial filtering schema of the one-dimensional à-trous wavelet transform for a single input pixel
and filter radius A = 2. The number of sampled neighbors with non-zero coefficients (black) is constant in each
level ; , while the dilation B increases. Arrows show data dependencies between levels ; . (b) Interpretation of an
affine index access function 5 (8) = B8 + > . The dilation B , as shown here for a one dimensional à-trous wavelet
in iteration ; = 2, partitions space into B disjunct subsets. The offset o, resp. loop initialization, uniquely
identifies each subset [o]. Each chain of arrows represents a single subset, whereas subset [0] is highlighted
in color. The cardinality of each subset differs by at most one if the length of the data set is not an integer
multiple of B .

to form a set of shifted, decimated signals differing in their offset, i.e. the four subimages per input
(sub)image. The bijection f4 (Line 15) embeds the decomposed signals on a rectilinear grid. In this
implementation variant, fA arranges subimages in ascending order, sorted by their offset in the
input image, in which case its sufficient to apply the bijection f1 (Line 14) approximating texture
mirroring for the embedded subimages in the first iteration only. In the last iteration, we instead
invert all applied bijections to restore the original image layout. We discuss the shown optimized
bijection (Lines 16 to 22) to invert multiple applications of 52↓ in section 3.3.

3.1 Signal Decomposition
The core of our method is an iterative subdivision of the input image into four independent
subimages through the bijection f2↓. We show the correctness of this transformation by modelling
local data dependencies of each output pixel as affine functions. We then extend this notion from
individual pixels to affine dependencies for the whole image.

Data Dependency of Affine Memory Accesses. As demonstrated in fig. 4 lines 5 to 10, stencil
computations can usually be modeled through a loop nest centered around the output element.
Given a single loop for(i=>;i<F;i+=B) with loop counter 8 ∈ Z, initialization > , condition 8 < F ,
and loop increment B , all dynamic instances of this loop nest can be modeled through an affine
function iB + > along with inequalities modeling the constraints imposed by the initialization and
condition, which we conveniently express as 8 ∈ [>,F). As can be seen in fig. 5(b), the initialization
> partitions the domain Z into B disjunct subsets. As this describes a congruence relation modulo
B , we denote [>]B as the subset of all values described by the affine function with initialization
> ∈ [0, B). On a bounded domain of width F , the size of the induced subsets may differ by one
if the value range F is not divisible by the loop increment B . There is a prefix of # = (F mod B)
large congruence classes, and suffix of A − # small congruence classes. Thus, the maximal wasted
memory for padding to a single cardinality for all subsets is at most the number of small subsets
< B .

Data Dependencies of À-trous Wavelets. We will now consider how the global data dependencies
of a dilated stencil loop centered on each pixel can be modeled analogously as an affine function.
Given a stencil with radius A centered around pixel G with a dilation factor of B , we can uniquely
identify each memory access of 5 with an iteration vector (G, Bn), where = ∈ [−A, A] describes the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:8 Dolp et al.

relative offset of a non-zero tap integrated into G . The memory locations accessed by G are given by
#G (black and green in fig. 5). The union of all center pixels G ∈ Z with a non-empty intersection
of dependent memory accesses #G can be described by an unbounded joint affine function (gray
in fig. 5(a)). Consequently, a stencil with dilation B and arbitrary support A > 0, decomposes the
domain Z into B independent subsets. Figure 5(b) shows an example for a one-dimensional stencil
with dilation B = 4 as it occurs in level ; = 2 of an à-trous wavelet. We only consider rectangular
schedules, which apply the identical transformation to both orthogonal image signals along width
, and height � of an image � , and can thus directly transfer observations for one-dimensional
affine functions to the two-dimensional à-trous transform. We define [o]; = {G | G = 2;8 + o, G ∈ � }
as the o = (>G , >~)-th subimage at level ; of the input image � . Thus, � = [(0, 0)]0. In a hierarchical
application, each wavelet level ; partitions the subimages further into even and odd signals along
each axis. Therefore, level ; consists out of $ × $ = (2;) × (2;) subimages. Data dependencies
between subimages [o]; decompose recursively. There are no data dependencies between two
taps at level ; ′, if the taps were partitioned into different subimages in a previous iteration ; < ; ′.
Consequently, each subimage [o]; is independently schedulable, only being directly dependent on
its parent subimage [bo/2c];−1.

Delaying discussions of varying subimage sizes until section 3.2, we define the bijection

f;↓ = (>G , >~, 2, G,~) ↦→ (>G + ; (G%2;), >~ + ; (~%2;), 2, bG/2; c, b~/2; c),

which takes $ ×$ wavelet images as a 5-dimensional array $ ×$ ×� ×, ×� and decomposes
each subimage according to its data dependencies into 2; subimages represented by an array of
shape 2;$ × 2;$ ×� × d, /2; e × d�/2; e. In figure 3, we illustrate the application of f2↓ where a
single subimage [(0, 0)]0 is decomposed into four subimages. Mapping this array representation to
a memory layout varying the innermost dimensions, × � most quickly, data dependencies to
neighboring stencil taps #x are localized.

3.2 Image Domain Embedding
We define the embedding fA ◦ f4 , which reshapes the output of f2↓ back to the input shape
1× 1×� ×, ×� . Such a mapping reduces memory consumption and maximizes device occupancy.

Motivation. In a baseline schedule, each center pixel of the iterative filter is mapped to a single
GPU invocation. Consequently, the decomposition into congruence classes [o]; induces a partition
of invocations into independent sets. While this suggests that each subimage could be mapped to a
single shader, embedding of all subimages into a single domain after each iteration has two benefits.
First, we can reuse opaque image memory through ping-pong buffering. Second, we can dispatch a
single shader that processes all subimages while being oblivious to the dimensions of subimages
apart from optional weight modifications for out of bounds taps. Using a single shader dispatch for
all subimages of an iteration trivially works around the quantization of subimage bounds to integer
multiplies of the workgroup size. Otherwise, the occupancy of later iterations is impacted through
inactive invocations and dispatch grid sizes that insufficiently saturate the hardware. Figure 1(d),
shows an example where a single workgroup processes multiple subimages at once, which would
otherwise reduce occupancy through inactive invocations if unembedded subimages are directly
mapped to the device.

Embedding Bijection. In general, the shape of subimages [o]; may vary by up to a pixel along
each dimension, resulting in up to four subimage shapes. The function 6; : N2 ↦→ N2 maps subimage
indices to a pixel offset in the input, × � . By introducing padding to the width, and height
� , subimages may be embedded on a uniform grid reducing computational cost of 6; . To ensure
divisibility for all iterations, the padding introduced in the output image of the first iteration must

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:9

(a) ascending order g� with mirroring f1
thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

; = 0 0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1

; = 1 0 4 8 12 15 11 7 3 2 6 10 14 13 9 5 1

; = 2 0 8 15 7 2 10 13 5 4 12 11 3 6 14 9 1

; = 3 0 15 2 13 4 11 6 9 8 7 10 5 12 3 14 1

(b) ascending order without mirroring o sorted by bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - 10

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 10 11

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 1110 12

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 121110 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 13121110 -

(c) local subdivision g& with mirroring f1
thread 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

; = 0 0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1

; = 1 0 4 8 12 14 10 6 2 1 5 9 13 15 11 7 3

; = 2 0 8 12 4 2 10 14 6 1 9 13 5 3 11 15 7

; = 3 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

(d) local subdivision without mirroring

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - 10

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 10 11

0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15 1011 12

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 101112 13

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 10111213 -

Fig. 6. Example of our method for both subimage orderings (Section 3.2) with and without the boundary
bijection (Section 3.4) on an 16 × 1 image with the maximal number of wavelet iterations 4. The bits of an
pixel index 1=, ..., 12, 11, 10 are given with the most significant bit 1= (MSB) first. Mirroring ensures out of
bound taps are close to the center tap, preventing visual light leaking. Representants o of each subimage
are colored green. Shading indicates the orientation of the coordinate system of each subimage. Invocation
indices indicate the mapping of the stencil centers to the pixel indices in each level—the invocation index
reads the pixel in its column and writes it to the position as indicated by the order in the subsequent level
below.

be divisible by the number of subimages in the input of the last iteration 2;max−1. This padding
introduces at most 2;max−1 − 1 pixels along each axis. Consequently, the bijection reshaping each
iterations output is given as

f4 = (>G , >~, 2, G,~) ↦→ (0, 0, 2, 6; (o) + (G,~)).

Subimage Order. In the following, we discuss two possible definitions of the reordering bijection

fA = (>G , >~, 2, G,~) ↦→ (g (>G), g (>~), 2, G,~)

influencing the positioning of subimages [o]; on the grid by applying a permutation g before f4 .
First, local subdivision g& , which subdivides each subimage individually, addressing subimages
through a quad tree. Second, global subdivision, where we set g� to an identity mapping between
subimage identifiers o and grid positions, which embeds subimages in ascending order.

Local Subdivision Order. Local subdivision naturally results from an iterative application of f2↓ to
each subimage. Each subimage [o]; stored in a coordinate range in the input image, is partitioned
by its least significant bit of the local pixel indices 6; (o) −x and written back to the same coordinate
range in the output image. As illustrated in fig. 6(d), this leads to a reversal of bits as the ;-th bit is
inserted as the lowest bit to form the ;-bit wide subimage identifier. Consequently, local subdivision
is defined as

g& (o = 1; ...121110) = 101112 ...1; = rev2 (o) >> (bitsize(o) − ;),

i.e. reversal of all ; significant bits 18 of the subimage identifier o. In a practical implementation, the
function rev2 reverses the bits of the bitsize(·) ≥ ;-wide unsigned integer format used to store o.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:10 Dolp et al.

Ascending Order. An iterative application using an identity function g� (o) = o partitions global
pixel indices. As shown in fig. 6(b), iteration ; partitions the embedding at the ;-th bit, inserting it
as the highest bit into the subimage identifier, effectively partitioning the original pixel position at
; with the lower bits representing > , and higher bits the local subimage position.

Discussion. Notably, an iterative global subdivision may be implemented as a single application
of f2↓ to the whole input image, i.e. the embedded subimages. Further, as the order between
small and large subimages is maintained, Euclidian division automatically packs subimages on
a rectilinear grid without padding. In an iterative application of local subdivision g& , iteration ;

permanently partitions memory regions based on the ;-th bit for all subsequent iterations ; ′ > ; . In
contrast to g& , an embedding in ascending order introduces additional data dependencies between
subimages as potentially reused memory regions are not disjoint. (As an example, consider memory
dependencies between subimage [(1, 0)]1 and [(0, 0)]0 in fig. 6.) However, in the proposed schedule,
where subimages of a level are processed in a single shader dispatch with ping-pong buffering,
these additional data dependencies are already satisfied.

3.3 Interleaving
To restore the original image layout after multiple iterations of our method, we define

f;max↑ = (f−1
o); = (f4 ◦ f1 ◦ fA)−1 (f−1

2↓),

which first unembeds the subimages (f4 ◦ f1 ◦ fA)−1, before (re)interleaving
(f−1

2↓)
;max = (o, 2, G,~) ↦→ (0, 0, 2, o + 2; (G,~)).

The bijection f−1
4 computes grid positions and subimage-local pixel indices from global pixel indices.

The bijections f−1
A and f−1

1
are self-inverse, with f−1

A restoring the subimage identifier from the
embedded grid position and f−1

1
normalizing the pixel coordinate system of each subimage.

3.4 Treatment of Signal Boundaries
In this section, we define the boundary permutation f1 , which approximates texture mirroring for
the embedded subimages in order to reduce overhead of out-of-bounds memory accesses.

Motivation. We strive for permutations to be pure post- and preprocesses not causing any
additional arithmetic or control overhead within the filter loop. In the baseline schedule, the
overhead of boundary checks can often be mitigated by exploiting texture mirroring or by setting
out-of-bounds accesses to a special value with zero weight, i.e. 54 (·) = 0—either using the texture
sampler, or by resolving out-of-bounds accesses once while preloading data from global to local
memory. However, our embedding fA ◦f4 prevents these optimizations as boundary checks between
embedded subimages are required.

Boundary Bijection. We flip the axes of subimages embedded in the two dimensional domain in a
checkerboard as shown fig. 1(a). Given the position o of the subimage on the embedding grid, the
boundary bijection is flips the axis of every other subimage of shape,[o]; × � [o]; , i.e.

f1 = (>G , >~, 2, G,~) ↦→ (>G , >~, 2, >G & 1 ? G : ,> − G − 1, >~ & 1 ? ~ : �> − ~ − 1).

Discussion. As it allows cross-talk between neighboring subimages, f1 is non-semantics pre-
serving as the computed result f 5 (G) differs from 5 (G) for pixels close to the image boundaries.
However, as discussed in more detail in section 4.1, taps from neighboring subimages fall within the
footprint of the filter support quantized to the dilation factor, effectively converting the à-trous filter
to a undilated filter in boundary regions. Furthermore, it increases the number of taps integrated

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:11

from within the current subimage, as the boundary may be crossed multiple times during iterative
filtering.
We can implement the boundary permutation as a pure postprocess in the postamble without

additionally computing the coordinate system orientation as a side product of (f4 ◦ f1)−1 in the
preamble as our exposition assumes either a symmetric filter kernel or a filter kernel deriving its
weights in a data-driven way from the pixel values. In these cases, the filter kernel is independent
of the coordinate system orientation of subimages. Otherwise, either the filter kernel or the data
would have to be flipped to match orientation.

Iterative Filtering. In an iterative application of a symmetric or data-driven filter kernel, the
output of the prior iteration still would have to be unembedded to determine the coordinate system
orientation of the output in the current iteration. We propose the following optimizations for
iterative filtering. For ascending order g� , uneven pixels are always embedded at uneven positions
since subimages are positioned using the LSB 10 first. Thus, we can statically specialize a shader
that flips half of the input image in the postamble of the first iteration, ignoring the orientation of
subimages in all subsequent iterations. For local subdivision order g& the boundary permutation is
applied in each iteration. The orientation stays the same for pixels coordinates, where the most
significant bit (MSB) of the prior subimage identifier 1;−1 and the new MSB 1; are identical.

The difference between both image domain embedding schemes with mirroring is illustrated in
fig. 6.

3.5 Shared Memory Bijection
A common optimization technique for stencils is shared memory resident overlapped tiling, i.e. for a
workgroup size of,6×�6 , a rectangular region�×,B×�B = �×,6+2A×�6+2A of the input image
containing all memory locations accessed by a filter kernel with radius A is cached in fast on-chip
memory (see fig. 1(d)). Efficient addressing of on-chip memory requires bank conflict resolution,
which is commonly achieved through row-padding. As the memory accessed by a workgroup
grows exponentially with each à-trous iteration, the baseline schedule is unable to leverage scarce
on-chip memory, leading state-of-the-art implementations [Nvidia Inc. 2023] to only exploit on-chip
memory in the first iteration. Our method converts wavelets to an undilated filter with constant
filter support across all iterations. However, even for the first iteration, mapping an overlapped tile
to shared memory can be non trivial, if many features � are cached with row-padding. Therefore,
in this section, we propose a bijection fshm to resolve bank conflicts without padding. In essence,
we derive the shape of a sliding window, which is bank conflict-free for any memory offset within
the shared memory resident tile (Figure 1(d)). We then use this shape to tile the subgroups within a
workgroup.

The GCD-Test. The core idea of our method is to design a permutation fshm that avoids concurrent
access to the same bank through the GCD-Test [Muchnick 1997], an alias analysis technique. To do
so, we model the affine constraint imposed by bank conflicts explicitly by comparing the stride B of
an affine memory access with the stride implied by the number of shared memory banks 21 in the
system. Assuming successive words are stored in successive banks in a cyclic pattern, this implies

= · 2̂1 =< · B ⇐⇒ = · 2̂1 −< · B = 0, where =,< ∈ N (1)

and 2̂1 is the number of shared memory banks after correcting for the size of the array elements
stored in shared memory. We assume shared memory banks and array elements to be of equal
size (21 = 2̂1) and refer to the supplementary material for differing bit widths. Solving this linear
Diophantine equation, for example using the extended Euclidean algorithm, gives us the greatest
common divisor 3 = gcd(B,−2̂1) = gcd(B, 2̂1) and the coefficients describing the smallest positive

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:12 Dolp et al.

0 4 8 12 16 20 24 28 0 4
8 12 16 20 24 28 0 4 8 12

16 20 24 28 0 4 8 12 16 20
24 28 0 4 8 12 16 20 24 28
0 4 8 12 16 20 24 28 0 4

0 4 8 12 16 20 24 28 0 4
8 12 16 20 24 28 0 4 8 12

16 20 24 28 0 4 8 12 16 20
24 28 0 4 8 12 16 20 24 28
0 4 8 12 16 20 24 28 0 4

00 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28

00 1 2 3 4 5 6 7 98 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
array indices along x-axis

corresponding bank indices

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28

(a)

(c) bank pattern

(b)

induced affine subsets 1D

stride of banks

stride of rows

B = %G

2̂1

(d) induced affine subsets 2D

0 4 8 12 16 20 24 28 0 4
8 12 16 20 24 28 0 4 8 12

16 20 24 28 0 4 8 12 16 20
24 28 0 4 8 12 16 20 24 28
0 4 8 12 16 20 24 28 0 4

0 1

0 1 0 1

%G

)G

)G

)G

(e) bank pattern tile

lcm(B, 2̂1)

Fig. 7. Overview of our padding-free bank-conflict resolution strategy. The example uses a shared memory
region with width,B = 10 and a component size of 128-bit in a system with 32 32-bit shared memory banks.
The same graphic can also serve as the solution for a system with eight banks and a component size of
32-bit if each shown bank index is divided by four. (a) The core idea is to compare the stride of an affine
column access with the stride of the bank to find the point at which both affine functions conflict and thus
realign to repeat the mapping. (b) This induces an affine function partitioning banks into disjunct subsets.
(c) Shows the affine access and shared memory of (a) in two-dimensional row-major order. (d) Shows (b) in
two dimensions. (e) A mapping of invocation indices within a subgroup to any set of columns from different
affine subsets resolves all bank conflicts. We call the resulting region a bank pattern tile if adjacent columns
are picked to form a subgroup.

non-trivial solution

= =
2̂1

3
and −< =

B

3
.

Figure 7(a) provides a visual intuition of the above equations with 2̂1 = 8 and B = 10. The coefficient
< = 10/3 = 5 gives the number of cycles through each bank required until the array accesses and
the shared memory banks realign, and thus the point of the first bank conflict. Since the number of
banks coincides with the subgroup size, this is equal to the number of subgroups. The coefficient
= = 8/3 = 4 gives the number of array cells accessed before the bank conflict occurs.

Construction. Setting the stride B of the affine memory access to the width,B of the shared
memory region allows an analysis of bank conflicts within a column of a row-major shared
memory layout. In this case, = gives the number of rows after which the periodic mapping between
array indices and bank indices repeats. As a consequence, resolving bank conflicts in a region
%G × %~ =,B × = resolves bank conflicts for any shared memory footprint,B × �B – effectively
bounding the height of our analysis. We call this region, shown in fig. 7(c), a bank pattern. At the
same time, = gives the maximal height of a column 1 × = that is bank conflict free. Analog to our
discussion section 3.1, the greatest common divisor 3 induces a partition of these columns into

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:13

disjunct affine subsets of shared memory banks, which is shown in fig. 7(b). Consequently, reducing
the problem from a two-dimensional conflict resolution problem to a one-dimensional problem
over columns. Selecting an arbitrary column from each subset forms a bank conflict free access
pattern for a subgroup. If adjacent columns are picked to form a subgroup of shape)G ×)~ = 3 × =

as shown in fig. 7(d), we call the region a bank pattern tile.

Properties. Bank pattern tiles are translation invariant and periodic at column boundaries as
3 divides,B by construction. Rows are periodic if = divides �B . We consider translation by one
to construct a proof by induction. Shifting a bank pattern tile vertically by one, a row 9 will be
replaced by a row (9 ± =)%�B with an identical sequence of bank indices from a neighboring bank
pattern. Shifting a bank pattern tile horizontally by one, a column 9 will be replaced by another
column (9 ± 3)%,B from the same affine subset, which is backed by the same set of banks—albeit
in a different sequence. We discuss normalization of banks within columns in the supplementary.

Limitations. As the bank pattern height may not divide the height of the workgroup�6 , reshaped
subgroups within a workgroup may be unable to cover the workgroup shape. Any odd shared
memory width,B , for example, yields an elongated bank pattern 1× 2̂1 . While for any stencil radius
A , odd shared memory widths,B = ,6 + 2A may not occur for usual choices of,6, we discuss
strategies to alleviate these limitations by reshaping bank pattern tiles in the supplementary.

Application. To resolve bank conflicts in a 2-dimensional workgroup, we define the bijection

fshm = (0, 0, 2,G,~) ↦→ (0, 0, 2,
[
Gg ∗,6

~g ∗ �6

]
+
[
3 (8sg%(,6/3))
=(8sg / (,6/3))

]
+
[
8inv%3
8inv /3

]
),

which tiles the workgroup shape with subgroups (second summand) reshaped to bank pattern tiles
(third summand).The transform is applied to 2-dimensional local invocation indices maintaining the
global workgroup offset (first summand). The workgroup identifier Gg, ~g, the index of the subgroup
within the workgroup 8sg, and the index of the invocation within the subgroup 8inv are usually
available directly without deriving them from G,~. An example application is shown in fig. 1(d),
where 4 × 2 subgroups of shape 4 × 8 cover a 16 × 16 workgroup. If �6 is equal to =, fshm may
alternatively be implemented as a transpose, as shown in fig. 4 for a 8 × 8 workgroup.

4 EVALUATION
We evaluate the effects of our scheduling method on reconstruction quality and execution efficiency.
In section 4.1 we discuss the effect of the non-semantics preserving treatment of image boundaries
on reconstruction quality. In section 4.2 we evaluate the throughput of key GPU subsystems and
its effect on execution time.

4.1 ReconstructionQuality At Image Boundaries
The weighted contribution of neighboring pixels to a pixel in the boundary region for different
boundary strategies is shown in fig. 8. If out-of-bounds memory accesses are set to zero weight,
our scheduling method preserves the semantics of the baseline schedule (first column). If out-of-
bounds memory accesses are not prevented, a naive embedding f4 without checkerboarding of
the coordinate axis f1 will retrieve filter taps from the opposite side of neighboring subimages
(second column). This crosstalk between wavelets visually manifests as light leaking to the opposing
side of the input image. In contrast, the proposed approximation of mirroring f1 (third column)
automatically retrieves close-by filter taps from neighboring subimages, effectively converting the
à-trous filter to a dense filter in boundary regions. More precisely, let � be a tiling of the input
image � into 2; × 2; tiles, which contain one pixel from each subimage—except for partial tiles at

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:14 Dolp et al.

Fig. 8. Effect of different boundary strategies in
the two-dimensional embedding. The image size is
32 × 32. Even rows show the weight contribution of
the neighboring pixels to the measured center pixel
G = (16, 30). Difference images in odd rows encode
deviations from the baseline.

Fig. 9. Runtime of the baseline schedule and our
proposed schedules.

Fig. 10. Cache hit rates and throughputs of hard-
ware units for the baseline schedule and our pro-
posed schedule with shared memory (’SHMEM’) and
without shared memory (’GMEM’). Throughputs are
measured in percent relative to the maximum theo-
retical throughput.

boundaries if � is not divisible by 2; . Then all out of bounds memory taps fall into zero weight
taps within the support of the à-trous kernel in � expanded to the tiles in � intersected by the
support. This invariant holds for any positioning of wavelets g on a rectilinear of the embedding
permutation fA ◦ f4 . This remapping of out-of-bounds memory accesses has two side effects. First,
structural artifacts of the wavelet filter, especially prominent in the box filter (first and second row),
are reduced along the axis orthogonal to the boundary, whereas the non-locality of the ascending
embedding g� benefits this smoothing (last column). Second, in the baseline, pixels close to the
boundary have low contribution as the iterative filter is truncated at the first out-of-bounds memory
access. Consequently, taps within bounds are only integrated in early iterations where all ancestor
taps are within bounds. As f4 does not truncate the filter if a tap is out-of-bounds, filter taps may
cross the boundary multiple times, preserving the correct weight for contributions from pixels
within bounds. As a result, weight of pixels close to the boundary is increased for both g� and g& .

4.2 Performance Evaluation
Hardware & Software. We evaluate our method on an NVIDIA RTX 3070. Measurements are

taken in stable power mode. Given the regularity of the workload, variance between measurements
is minor and consequently not reported. We evaluate our method using two à-trous algorithms.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:15

First, edge avoiding wavelets (EAW) [Hanika et al. 2011], which are designed for computational
photography and denoise a color image without auxiliary buffers. Second, spatio-temporal variance
guided filtering (SVGF) [Schied et al. 2017], which is a real-time denoising algorithm designed for
removal of Monte Carlo noise. Our baseline implementation [Alber 2024] has slightly adapted edge
stopping functions with depth gradients explicitly stored in the G-buffer and an elided Gaussian
blur of luminance variance. We refer to the code provided in the supplementary material for details.

Performance Characteristics. Figure 10 compares the throughput of hardware units and their
cache hit rates in the baseline schedule to our proposed schedule. Figure 9 plots shader runtimes.
We note that the runtime of the denoiser is independent of the framebuffer contents.
Independent of the iteration, the workload is memory-bounded. In the baseline schedule, the active
working set of each workgroup increases with each iteration ; . Consequently, we observe the
workload gradually shifting to increasingly distant units of the memory hierarchy. The workload
is initially L1Tex limited. L2 bandwidth from L1 and L2 bandwidth to VRAM increase with each
iteration and is saturated for ; ≥ 4, at which point the workload is limited by L2. The increasing
non-locality of the workload is also observable in the cache hit rates. L1 hit rates gradually decrease
from 96% to 31%. Data is increasingly served from L2 with hit rates increasing to 96% in iteration
; = 4. As a result of poor memory subsystem performance, multiprocessor throughput is low,
further decreasing as latency increases. The most prominent stall reasons are long scoreboard and
TEX throttle—indicating that a high number of texture fetches with high latency are inflight. If the
decreasing performance of the memory subsystem manifests in runtime variation depends on the
specific combination of à-trous filter and device. We especially observe increasing runtimes for
iterations saturating L2 bandwidth for both evaluated algorithms on an NVIDIA RTX 3070. However,
in other proprietary implementations, not further evaluated in this paper, we either observe a
near-linear increase in runtime with each iteration; or a constant runtime as decompression of the
G-buffer on the special function unit masks poor memory subsystem performance [Willberger et al.
2019].
In contrast, our method has near-constant throughput and cache hit rates for each filter iteration,
resulting in an almost uniform shader runtime for each iteration. Thus, indicating the dynamically
varying output pattern of our localization is not integral for performance. Comparing an implemen-
tation of our method without shared memory to the baseline, throughputs of the memory subsystem
are near-identical to the first iteration of the baseline. SM throughput, however, is increased in our
variants—27.2% for ascending order, 29.6% for local subdivision order, compared to 25.6%-17.4% in
the baseline schedule. While our permuted filter iterations issue 15.8%, resp. 8.1%, more instructions
for subdivision, resp. ascending order, their runtime is near-identical to the baseline schedule,
indicating overhead of our method is hidden by instruction-level parallelism. Memory localization
without shared memory usage does not result in a speedup for the first iteration, only reducing
runtime for later iterations with an approximate speedup of 1.5. Preloading to shared memory
results in a speedup of 2.5 for the first iteration. The speedup over later iterations of the baseline is
3.8. We note that our method with shared memory enabled has lower L1Tex hit rates, as memory
transactions after data preloading are served from shared memory.
The last SVGF iteration restores the original image layout. The non-locality of this write operation
negatively impacts runtimes, increasing the runtime from 0.30ms to 0.46ms. Given the low multi-
plicity of write to read operations, we do however still observe a speedup of 2.19 over the baseline.
The last iteration of EAWmerges the result of all iterations. Our method delocalizes read operations
in this upward pass negatively impacting runtimes—increasing the runtime of our shared memory
method to 3.88ms compared to 1.05ms in the baseline. As a result, the overall speedup for the whole
algorithm is reduced to 1.2.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

1:16 Dolp et al.

Staged Decompression. Auxiliary features in the G-buffer are usually packed and encoded in a
rendering engine specific format. Decoding this data has high arithmetic cost within the stencil
loop—especially if data is non-linearly compressed. For SVGF, we decompress data once during
preloading to shared memory, utilizing 40 byte per pixel to store the data of each neighbor. This
accounts for 0.16ms of the reported runtime reduction, equating to an additional speedup of 1.24.

Portability. We report runtime speedups for other devices to demonstrate hardware portability.
For SVGF, on a NVIDIA RTX 2070, the baseline has a runtime of 0.88 to 1.62ms. In contrast, our
method has a constant runtime of 0.66ms—equivalent to a speedup of 1.33 to 2.42. For EAW, on an
AMD Radeon RX 7900 XT with variable clock rates, we measure a runtime from 0.09 to 0.16ms for
the baseline, 0.11 to 0.12ms for our method without shared memory and local subdivision, 0.068
to 0.071ms with shared memory. For the ascending variant, we measure 0.10 to 0.11ms without
shared memory, 0.052 to 0.59ms with shared memory—equivalent to a speedup of 1.72 to 2.85.
Delocalization in the upward pass results in a runtime of 0.575ms compared to 0.464ms in the
baseline.

5 CONCLUSION
We introduced a scheduling technique to accelerate à-trous wavelet-based denoisers. Our optimiza-
tion approach follows the general idea that on modern hardware with deep memory hierarchies,
the arithmetic overhead of memory index computations can either be hidden by memory latency
through instruction-level parallelism or amortized by the increased memory throughput. We de-
rived a permutation of GPU invocation indices localizing image coordinates to coalesce global
memory accesses and to enable shared memory usage. The permutation is loop-invariant avoid-
ing arithmetic and control overhead within the stencil loop. We optionally eliminate boundary
checks and improve neighborhood sampling at image boundaries without any overhead through
an embedding of shifted decimated image signals into the original two-dimensional image domain.
Since our method enables the usage of shared memory, a promising future research direction is to
decouple shader dispatches from wavelet iterations. Given the exponentially growing filter support
of à-trous wavelets, non-overlapped tiling [Bondhugula et al. 2016; Grosser et al. 2014, 2013] seems
especially promising. Our method improves the memory efficiency of undecimated à-trous wavelets
independent of the hyperparameters of the denoiser, such as the number of wavelet levels and
auxiliary features. Furthermore, our schedule has constant cost in each iteration, which we believe
will help others to design efficient denoisers tailored to the needs of their rendering architecture.

ACKNOWLEDGMENTS
This work has been supported by the Helmholtz Association (HGF) under the joint research school
“HIDSS4Health – Helmholtz Information and Data Science School for Health” and through the
Pilot Program Core Informatics.

REFERENCES
Lucas Alber. 2024. Markov Chain Path Guiding for Real-Time Global Illumination and Single-Scattering. (2024). Institute

for Visualization and Data Analysis (IVD), Karlsruhe Institute of Technology (Master Thesis).
Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice

Rousselle. 2017. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Transactions
on Graphics (Proceedings of SIGGRAPH) 36, 4, Article 97 (2017), 14 pages. https://doi.org/10.1145/3072959.3073708

Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper Bekkers, Tomasz Stachowiak, and Johan
Andersson. 2019. Hybrid Rendering for Real-Time Ray Tracing. (2019), 437–473. https://doi.org/10.1007/978-1-4842-
4427-2_25

Jakub Boksansky, Michael Wimmer, and Jiri Bittner. 2019. Ray Traced Shadows: Maintaining Real-Time Frame Rates. (2019),
159–182. https://doi.org/10.1007/978-1-4842-4427-2_13

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

https://doi.org/10.1145/3072959.3073708
https://doi.org/10.1007/978-1-4842-4427-2_25
https://doi.org/10.1007/978-1-4842-4427-2_25
https://doi.org/10.1007/978-1-4842-4427-2_13

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:17

Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath. 2016. Diamond tiling: Tiling techniques to maximize
parallelism for stencil computations. IEEE Transactions on Parallel and Distributed Systems 28, 5 (2016), 1285–1298.
https://doi.org/10.1109/TPDS.2016.2615094

Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai,
and Timo Aila. 2017. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder.
ACM Transactions on Graphics 36, 4 (2017), 1–12. https://doi.org/10.1145/3072959.3073601

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik PA Lensch. 2010. Edge-avoiding a-trous wavelet transform
for fast global illumination filtering. In Proceedings of High Performance Graphics. 67–75. https://doi.org/10.2312/EGGH/
HPG10/067-075

Raanan Fattal. 2009. Edge-avoiding wavelets and their applications. ACM Transactions on Graphics 28, 3 (2009), 1–10.
https://doi.org/10.1145/1531326.1531328

Tobias Grosser, Albert Cohen, Justin Holewinski, Ponuswamy Sadayappan, and Sven Verdoolaege. 2014. Hybrid hexag-
onal/classical tiling for GPUs. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and
Optimization. 66–75. https://doi.org/10.1145/2581122.2544160

Tobias Grosser, Albert Cohen, Paul HJ Kelly, J Ramanujam, Ponuswamy Sadayappan, and Sven Verdoolaege. 2013. Split
tiling for GPUs: automatic parallelization using trapezoidal tiles. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units. 24–31. https://doi.org/10.1145/2458523.2458526

Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and Louis-Noël Pouchet. 2011.
Polly-Polyhedral optimization in LLVM. In Proceedings of the First International Workshop on Polyhedral Compilation
Techniques (IMPACT).

Johannes Hanika, Holger Dammertz, and Hendrik Lensch. 2011. Edge-Optimized À-Trous Wavelets for Local Contrast
Enhancement with Robust Denoising. Computer Graphics Forum (Proceedings of Pacific Graphics) 30, 7 (2011), 1879–1886.
https://doi.org/10.1111/j.1467-8659.2011.02054.x

Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020. Neural Temporal Adaptive Sampling
and Denoising. Computer Graphics Forum 39, 2 (2020), 147–155. https://doi.org/10.1111/cgf.13919

Nikolai Hofmann, Jon Hasselgren, and Jacob Munkberg. 2023. Joint Neural Denoising of Surfaces and Volumes. Proceedings
of the ACM on Computer Graphics and Interactive Techniques 6, 1 (2023), 1–16. https://doi.org/10/ggd8dh

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning Approach for Filtering Monte Carlo
Noise. ACM Trans. Graph. 34, 4, Article 122 (jul 2015), 12 pages. https://doi.org/10.1145/2766977

Masaki Kawase. 2003. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L (Wreckless). (2003). http://www.daionet.
gr.jp/~masa/archives/GDC2003_DSTEAL.ppt Game Developers Conference (GDC).

Patrick Kelly, Yuriy O’Donnell, Kenzo ter Elst, Juan Cañada, and Evan Hart. 2021. Ray Tracing in Fortnite. In Ray Tracing
Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX. Apress, 791–821. https://doi.org/10.1007/978-
1-4842-7185-8_48

Steven S. Muchnick. 1997. Advanced compiler design implementation. Morgan Kaufmann. 279–284 pages.
Nvidia Inc. 2023. NVIDIA Real-Time Denoisers. https://github.com/NVIDIAGameWorks/RayTracingDenoiser. retrieved

01/09/2023.
Olaf Ronneberger, Philipp Fischer, andThomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation.

In International conference on medical image computing and computer-assisted intervention (MICAII). Springer, 234–241.
https://doi.org/10.1007/978-3-319-24574-4_28

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu
Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-
Time Reconstruction for Path-Traced Global Illumination. In Proceedings of High Performance Graphics. Association for
Computing Machinery, New York, NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.3105770

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estimation for Real-time Adaptive Temporal
Filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 2, Article 24 (2018), 16 pages.
https://doi.org/10.1145/3233301

Pradeep Sen, Matthias Zwicker, Fabrice Rousselle, Sung-Eui Yoon, and Nima Khademi Kalantari. 2015. Denoising your
Monte Carlo renders: recent advances in image-space adaptive sampling and reconstruction. In ACM SIGGRAPH Courses.
255. https://doi.org/10.1145/2776880.2792740

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik Vaidyanathan, and Angus G Forbes. 2022.
Temporally Stable Real-Time Joint Neural Denoising and Supersampling. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 5, 3 (2022), 1–22. https://doi.org/10.1145/3543870

Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G. Forbes. 2020. A Reduced-Precision Network for
Image Reconstruction. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 39, 6, Article 231 (2020), 12 pages.
https://doi.org/10.1145/3414685.3417786

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

https://doi.org/10.1109/TPDS.2016.2615094
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.2312/EGGH/HPG10/067-075
https://doi.org/10.2312/EGGH/HPG10/067-075
https://doi.org/10.1145/1531326.1531328
https://doi.org/10.1145/2581122.2544160
https://doi.org/10.1145/2458523.2458526
https://doi.org/10.1111/j.1467-8659.2011.02054.x
https://doi.org/10.1111/cgf.13919
https://doi.org/10/ggd8dh
https://doi.org/10.1145/2766977
http://www.daionet.gr.jp/~masa/archives/GDC2003_DSTEAL.ppt
http://www.daionet.gr.jp/~masa/archives/GDC2003_DSTEAL.ppt
https://doi.org/10.1007/978-1-4842-7185-8_48
https://doi.org/10.1007/978-1-4842-7185-8_48
https://github.com/NVIDIAGameWorks/RayTracingDenoiser
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3233301
https://doi.org/10.1145/2776880.2792740
https://doi.org/10.1145/3543870
https://doi.org/10.1145/3414685.3417786

1:18 Dolp et al.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses, Sven
Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions. (2018). http://arxiv.org/abs/1802.04730

Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák.
2018. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 37, 4, Article 124 (2018), 15 pages. https://doi.org/10.1145/3197517.3201388

Thomas Willberger, Clemens Musterle, and Stephan Bergmann. 2019. Deferred Hybrid Path Tracing. In Ray Tracing Gems:
High-Quality and Real-Time Rendering with DXR and Other APIs. Apress, 475–492. https://doi.org/10.1007/978-1-4842-
4427-2_26

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang. 2019. Adversarial Monte Carlo
Denoising with Conditioned Auxiliary Feature Modulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia) 38, 6, Article 224 (2019), 12 pages. https://doi.org/10.1145/3355089.3356547

Dmitry Zhdan. 2021. ReBLUR: A Hierarchical Recurrent Denoiser. In Ray Tracing Gems II: Next Generation Real-Time
Rendering with DXR, Vulkan, and OptiX. Apress, 823–844. https://doi.org/10.1007/978-1-4842-7185-8_49

Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen,
Cyril Soler, and S-E Yoon. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. In
Computer Graphics Forum, Vol. 34. 667–681. https://doi.org/10.1111/cgf.12592

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1007/978-1-4842-4427-2_26
https://doi.org/10.1007/978-1-4842-4427-2_26
https://doi.org/10.1145/3355089.3356547
https://doi.org/10.1007/978-1-4842-7185-8_49
https://doi.org/10.1111/cgf.12592

A Fast GPU Schedule For À-Trous Wavelet-Based Denoisers 1:19

Received 5 January 2024; revised 29 March 2024; accepted 6 April 2024

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article 1. Publication date: May 2024.

	Abstract
	1 Introduction
	2 Prior Work
	3 Method
	3.1 Signal Decomposition
	3.2 Image Domain Embedding
	3.3 Interleaving
	3.4 Treatment of Signal Boundaries
	3.5 Shared Memory Bijection

	4 Evaluation
	4.1 Reconstruction Quality At Image Boundaries
	4.2 Performance Evaluation

	5 Conclusion
	Acknowledgments
	References

